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A B S T R A C T   

Background: The error-related negativity (ERN) reflects individual differences in error monitoring. However, 
findings on the ERN in adult and adolescent depression have been inconsistent. Analyzing electroencephalo
graphic (EEG) data in both the time- and time-frequency domain can be useful to better quantify neural response 
to errors. The present study aimed at examining electrocortical measures of error monitoring in early adolescents 
with and without depression. 
Method: EEG activity was collected during an arrowhead version of the flanker task in 29 (25 females) early 
adolescents with depression and 34 without MDD (29 females). 
Results: The depression group showed reduced ERN amplitude, reduced error-related theta power and increased 
error-related beta power compared to the control group. When all variables that related to MDD diagnosis were 
considered simultaneously, both theta and beta power, but not the ERN, were independently related to an 
increased likelihood of being diagnosed with depression. 
Conclusions: By examining both time-domain and separate time-frequency measures, the present study provided 
novel evidence on error monitoring alterations in youth depression, suggesting that depression during adoles
cence may be characterized by reduced error monitoring (i.e., reduced ERN and error-related theta) and post- 
error inhibition (i.e., greater error-related beta power). These results support that time-frequency measures 
might be better suited for examining error-related neural activity in MDD relative to time-domain measures.   

1. Introduction 

Ranked among the most prevalent and costly disorders worldwide, 
major depressive disorder (MDD) is characterized by a persistent state of 
sadness and/or loss of interest or pleasure that affects cognition, 
behavior, and physical health (Kessler, 2012; Lim et al., 2012). MDD 
that occurs during adolescence is a particularly severe condition char
acterized by poor emotional, social, and academic functioning (Lew
insohn et al., 2003) that often persists into adulthood (Fombonne et al., 
2001). Earlier onset depression disposes youth to a greater risk of sui
cide, which represents the second leading cause of death in adolescence 
(Heron, 2014; Keenan-Miller et al., 2007). Therefore, identifying bio
markers implicated in adolescent-onset MDD that might contribute to its 
etiology and the recurrent course is of great importance. 

A process that appears to underlie MDD is a pattern of emotional 
disengagement from pleasant and unpleasant stimuli, consistent with 
the Emotion Context Insensitivity (ECI) hypothesis (Bylsma et al., 2008; 
Bylsma, 2021; Rottenberg and Hindash, 2015). The motivational 
disengagement that characterizes MDD is evident in reductions in 
physiological arousal to emotional stimuli (e.g., Foti et al., 2010; Lang 
et al., 2007; Klawohn et al., 2021; Messerotti Benvenuti et al., 2015; 
Messerotti Benvenuti et al., 2019; Rottenberg et al., 2005; Weinberg 
et al., 2016a). Reactivity to pleasant and unpleasant content can be 
viewed as components of Positive and Negative Valence Systems of the 
U.S. National Institute of Mental Health’s (NIMH) Research Domain 
Criteria (RDoC), respectively (Insel et al., 2010). Much of the evidence 
for the ECI hypothesis comes from studies examining the Positive 
Valence System, showing a strong association between MDD and 
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reduced neural response to positive or rewarding stimuli in adults (e.g., 
Dell’Acqua et al., 2022b; Whitton et al., 2015; Klawohn et al., 2021; 
Weinberg et al., 2016a; for a review see Hajcak Proudfit, 2015) and 
children (e.g., Auerbach et al., 2014; Belden et al., 2016; Burani et al., 
2021; Bress et al., 2012). On the other hand, evidence for reduced 
Negative Valence System functioning in MDD is more mixed (Bylsma, 
2021), with some studies showing reduced neural responses to negative 
stimuli in adults with MDD (Foti et al., 2010; Hill et al., 2019), and 
others showing the lack of a reduction of neural responses to negative 
pictures following reappraisal in adults (Bylsma, 2012) and children 
with depressive symptoms (Dennis and Hajcak, 2009). 

Physiological responses to the commission of an error (i.e., error 
monitoring) may be a way to assess the Negative Valence System. 
Indeed, making a mistake is generally perceived as subjectively un
pleasant and, at times, it can be perilous and threatening to one’s life 
(Weinberg et al., 2016b). For instance, at the physiological level, like 
other threats, the commission of an error elicits a cascade of defensive 
responses: greater startle reflex (Hajcak and Foti, 2008), higher skin 
conductance levels, and slower heart rate (Hajcak et al., 2003; Hajcak 
et al., 2004). 

A physiological measure of error monitoring is the error-related 
negativity (ERN), which arises as a negative electrocortical deflection 
in the event-related potential (ERP) at fronto-central scalp sites within 
100 ms following the commission of an error versus correct response 
(Falkenstein et al., 1991; Gehring et al., 1995). To date, findings on the 
ERN in depression have been less consistent, with studies reporting 
enhanced (Chiu and Deldin, 2007; Holmes and Pizzagalli, 2010) and 
reduced (Weinberg et al., 2015b; Ruchsow et al., 2004, 2006; Schrijvers 
et al., 2008) amplitude relative to healthy controls, or no differences 
(Olvet et al., 2010). In addition, reduced ERN was reported in the 
offspring of mothers with a history of MDD (Meyer et al., 2018). To date, 
only a few studies have assessed the ERN in children with depression – 
and those studies have reported either reduced (Ladouceur et al., 2012) 
amplitude or no differences in amplitude when compared to non- 
depressed youth (Bress et al., 2015). One study reported that youths 
with MDD did not show the normative increase in ERN amplitude as a 
function of age, suggesting that depression may alter the development of 
neural systems associated with error monitoring (Ladouceur et al., 
2012). 

Given the mixed findings on the ERN in depression, analyzing EEG 
data in both the time- and time-frequency domain can be a useful 
approach to better quantify neural response to errors (Morales et al., 
2022). Indeed, the utilization of both time and frequency data of the EEG 
signal allows the extrapolation of information that is not accessible using 
only time-domain analysis and reflects distinctive aspects of information 
processing (Cohen, 2014; Munneke et al., 2015). For example, time- 
domain analyses assume temporal consistency across trials, while the 
time-frequency approach allows for trial-by-trial variability (Morales 
et al., 2022). 

Error monitoring can be examined in terms of power across several 
frequency bands. Greater power in the delta (1–3 Hz) and theta (4–8 Hz) 
frequency bands in response to error relative to correct responses have 
been consistently reported, suggesting that these frequency bands are 
involved in error monitoring processes (e.g., Beatty et al., 2020; Cav
anagh et al., 2009; Cavanagh et al., 2017; Luu et al., 2004; Muir et al., 
2020; Munneke et al., 2015; Riesel et al., 2013; Sandre and Weinberg, 
2019; Trujillo and Allen, 2007). In addition, a few studies have exam
ined alpha power (8–14 Hz) in the context of error monitoring in healthy 
participants (Carp and Compton, 2009; Li et al., 2020; van Driel et al., 
2012), mainly reporting reduced alpha power to errors relative to correct 
responses. Given evidence indicating that alpha power changes reflect 
transient modifications of cortical activation during attentional tasks (e. 
g., Klimesch et al., 1998; Klimesch et al., 2007; Sauseng et al., 2005; 
Thut et al., 2006; specifically in error processing tasks, see Carp and 
Compton, 2009; Li et al., 2020), this alpha suppression is thought to 
reflect greater attentional engagement following the commission of an 

error. 
The beta frequency band (15–20 Hz), generated in sensorimotor 

areas (Tzagarakis et al., 2015) and linked to motor functions (Kilavik 
et al., 2013), has been less investigated in the context of error moni
toring. Some studies suggested that beta power might enable motor- 
action preparation by increasing flexibility allowing responses to be 
more appropriately adjusted (Gable et al., 2016; Engel and Fries, 2010; 
Jenkinson and Brown, 2011; Glazer et al., 2018; Wilhelm et al., 2021, 
2022). Beta oscillations are suppressed during action preparation 
(McFarland et al., 2000; Pfurtscheller et al., 1994; Yang et al., 2015), 
while increased beta power reflects inhibition of prepared actions in 
multiple tasks also related to error monitoring (Li et al., 2020; Rosin 
et al., 2011; Swann et al., 2012; Wessel et al., 2016). 

Despite the utility of time-frequency data in outlining separate 
mechanisms associated with error monitoring, to date, time-frequency 
patterns of error monitoring in depression remain unexplored. To fill 
this gap, the objective of the present study was to examine error moni
toring in early adolescence, among individuals with and without MDD. 
The ERN as well as time-frequency power within the delta, theta, alpha, 
and beta bands during a flanker task were analyzed to quantify neural 
correlates of error monitoring. Consistent with the ECI hypothesis, we 
hypothesized that MDD would be characterized by a reduced ERN, delta, 
and theta power to errors relative to healthy controls. Considering the 
lack of previous studies examining alpha and beta bands even in healthy 
individuals, no a priori hypotheses were formulated for these frequency 
bands. Lastly, an exploratory aim of this study was to examine whether 
using a combination of the ERN and time-frequency measures would 
explain unique variance in MDD status. 

2. Methods 

2.1. Participants 

The current study used data from a longitudinal study funded by the 
NIMH (MH106477) aimed to examine the effectiveness of a computer
ized adaptive attention bias modification training in modifying neural 
activity associated with errors and anxiety symptoms in a large sample 
of early adolescents. The present study included data collected from a 
subset of participants at the baseline visit. Families were recruited via a 
commercial mailing list, referrals, and other advertisements from the 
New York/Long Island, Tallahassee, and San Diego area communities. 
Eligible participants had to be fluent in English and a parent or legal 
guardian needed to be present at the lab visit. Exclusion criteria included 
any medical or developmental disability, severe suicidality, history of 
severe brain injury, and colour blindness, based on an ad-hoc anam
nestic interview. The present study included data from a subset of par
ticipants with MDD and a control group, consisting of 63 participants 
overall (9 males) between the ages of 11 and 14 years (M = 13.60 years; 
SD = 1.03). 

Participants were divided into two groups matched for age and 
gender: an MDD group (n = 29, 25 females) and a healthy control group 
(n = 34, 29 females). The presence of MDD was determined by a trained 
clinical interviewer using the Kiddie Schedule for Affective Disorders 
and Schizophrenia for School-Age Children (KSADS; Kaufman et al., 
1997). Table 1 includes the characteristics of the sample. Six 

Table 1 
Demographic, clinical variables, and EEG data for the group with depression 
(MDD) and the healthy control group (HC).   

HC group (n = 34) MDD group (n = 29) p 

Age 13.5 (1.01) 13.6 (1.09) .90 
Sex (% female) 85.3 86.3 .92 
Ethnicity 

(% White) 
58.2 61.8 .56 

CDI scores 7.17 (7.34) 19.3 (7.85) <.001  
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participants were previously included in a recently published work on 
error-related brain activity in obsessive-compulsive disorder that 
employed a similar procedure and methods (Dell’Acqua et al., 2022a; 4 
concurrently met the diagnostic criteria for MDD and OCD, and 2 
healthy participants, namely free from any mental disorder, were 
included in both control groups). Moreover, 38 % of MDD participants 
(n = 11) had GAD, 28 % (n = 8) had social anxiety, 31 % (n = 9) had 
separation anxiety, 38 % (n = 11) met for specific phobia, 7 % (n = 2) 
had panic disorders, 10 % (n = 3) had OCD, and 3 % (n = 1) had a non- 
specified anxiety disorder. All participants had normal or corrected-to- 
normal vision and were naive to the purpose of the experiment. Par
ticipants were compensated for their participation ($20 per hour). 
Parents/guardians and participants provided consent and assent before 
participating. The present study was conducted in accordance with the 
Declaration of Helsinki and was approved by the Institutional Reviews 
Boards of Florida State University, Stony Brook University and San 
Diego State University. 

2.2. Measures 

2.2.1. Self-reports 
The Children’s Depression Inventory (CDI) is a well-established and 

widely used self-report measure to assess depressive symptoms in chil
dren and adolescents (Kovacs, 1992). This scale is composed of 27 items, 
each scored on a 3-point scale (ranging from 0 to 2) with 0 being no 
presence of the symptom, 1 being mild presentation of the symptom, and 
2 representing severe symptoms. The CDI has good internal consistency 
and convergent validity with clinical diagnoses of depression in various 
adolescent samples (Ivarsson et al., 2006; Rivera et al., 2005). In the 
present sample, the CDI total score had excellent internal consistency 
with a Cronbach’s alpha value of 0.93. 

2.2.2. Flanker Task and behavioral data reduction 
An arrowhead version of the flanker task was administered through 

the Presentation software (Neurobehavioral Systems, Inc., Albany, CA). 
On each trial, five horizontally aligned arrowheads were presented for 
200 ms, followed by an ITI that varied between 2300 and 2800 ms. 
Congruent flankers were displayed in half of the trials (“<<<<<” or 
“>>>>>”), while the other half displayed incongruent flankers 
(“<<><<” or “>><>>”) in random order. Participants were instruc
ted to respond with their right hand as quickly and as accurately as 
possible by pressing the right mouse button if the central arrow was 
pointing to the right, and the left mouse button if the central arrow was 
pointing left. A practice block of 30 trials preceded the task to ensure an 
adequate understanding of the task. The task consisted of 11 blocks of 30 
trials (330 trials total). At the end of each block, participants received 
feedback based on their performance. If performance was 75 % correct 
or lower, the message “Please try to be more accurate” was presented; if 
performance was above 90 % correct, the message “Please try to respond 
faster” was displayed; otherwise, the message “You’re doing a great job” 
was shown. 

The first trial of each block and trials with no response were not 
included in the analyses. Considering their elevated skewness (skewness 
before transformation = 1.70; skewness after transformation = 0.43), 
RTs were log-transformed to produce a normal distribution. 

2.2.3. Electroencephalogram recording 
Continuous EEG was recorded during the flanker task using a 34- 

channel system (ActiCHamp system, Brain Products) placed according 
to the 10/20 system; two electrodes on the left and right mastoid, Cz was 
used as the online reference, and Fpz served as the ground electrode. 
Electrooculogram was recorded from electrodes placed above and below 
the left eye and two placed on the outer canthus of both eyes. The EEG 
was digitized with a sampling rate of 1000 Hz, utilizing a low-pass fifth- 
order sinc filter with a half-power cutoff set at 100 Hz. 

2.3. Procedure 

Lab visits lasted approximately 4–5 h and participants were asked to 
complete multiple tasks (i.e., including self-report questionnaires, psy
chophysiological and neuroimaging tasks). Current and lifetime psy
chiatric history were evaluated with the Kiddie Schedule for Affective 
Disorders and Schizophrenia for School-Age Children – Present and 
Lifetime Version (KSADS; Kaufman et al., 1997). Diagnosis was made 
consistent with the DSM-IV. The KSADS is a semi-structured clinical 
interview with good psychometric properties (Birmaher et al., 2009). 
The KSADS was conducted with parents and participants, separately, by 
trained interviewers under the supervision of experienced, Ph.D.-level 
clinical psychologists (Amir et al., 2023). Relevant to the current 
study, participants completed a flanker task while continuous EEG data 
were collected. Some of the participants’ stimulus-locked data from the 
flanker task has been previously published elsewhere (see Santopetro 
et al., 2021) and the main aims of the study, which included analyzing 
ERN in the entire sample, are presented elsewhere (Amir et al., 2023). 

2.4. EEG data processing 

2.4.1. Time-domain analysis 
For time-domain analyses, data were processed offline with Brain 

Vision Analyzer (Brain Products, Gilching, Germany). Raw EEG signals 
were referenced to the average of mastoid electrodes and filtered with 
low and high filter cutoffs set at 0.01 Hz and 30 Hz, respectively. For 
analyses of ERPs time-locked to the responses (i.e., ERN, CRN), EEG 
segments of 1500 ms were extracted from the continuous EEG, begin
ning 500 ms before responses. Data were then corrected for ocular 
movements and blinks (Gratton et al., 1983). Then, segments containing 
residual artifacts exceeding voltage steps >50 μV between sample 
points, a voltage difference of 300 μV within a single trial, or a maximum 
voltage difference of <0.5 μV within 100-ms intervals were automati
cally rejected and additional artifacts were identified and removed 
based on visual inspection. ERP averages were created for error and 
correct trials and a baseline of the average activity from − 500 to–300 ms 
before the response was subtracted from each data point. Only partici
pants with at least six usable error trials were included (Olvet and 
Hajcak, 2009). Based on previous research (e.g., Meyer and Klein, 2018; 
Klawohn et al., 2020), the error-related negativity (ERN) and correct- 
related negativity (CRN) were scored as the average voltage in the 
window between 0 ms and 100 ms after response commission on an 
error and correct trials, respectively; the CRN and ERN were quantified 
at electrode site FCz, where error-related brain activity was maximal. 

2.4.2. Time-frequency analysis 
The processing pipeline for the time-frequency domain was similar to 

the one conducted for the time domain. For this analysis, EEG data were 
processed offline in Brainstorm (Tadel et al., 2011). The signal was 
filtered with a band-pass filter of 0.3–30 Hz, to minimize slow drifts that 
could have adverse effects on time-frequency decomposition (Cohen, 
2014; Debnath et al., 2020). Blink artifacts were removed using inde
pendent component analysis (ICA). The signal was then segmented into 
1500 ms epochs, from 500 ms before stimulus onset to 1000 ms after 
onset. Then, segments containing residual artifacts exceeding ±70 μV 
(peak-to-peak) were excluded. Time-frequency analysis was performed 
using Morlet wavelet transformation on individual trials for each 1-Hz 
frequency bin between 1 and 30 Hz, using a mother wavelet at 1 Hz 
with 3-s time resolution (as calculated by the full width at half 
maximum, FWHM). Time-frequency decompositions were then aver
aged for each participant and condition (error and correct trials), and 
the event-related spectral perturbation (ERSP) was computed as the 
change in power expressed in decibels (dB) relative to the baseline 
(− 300 to − 100 ms) in each frequency bin at each time point (i.e., 
baseline normalization). Then, data were grand averaged across each 
participant for each condition. 
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2.4.3. Statistical analyses 
Statistical analyses were conducted using Rstudio (R Core Team, 

2012), JAMOVI, and Matlab using a two-tailed α = 0.05. Group differ
ences in demographics, self-report CDI scores, and error rates were 
examined using independent samples t-tests or χ2-tests. A repeated 
measures analysis of variance (ANOVA) was utilized to determine dif
ferences within- and between groups in RTs to correct vs. error trials. 

2.4.4. Time-domain 
Regarding the time-domain data, residualized difference scores were 

computed to isolate variance specific to each measure by saving the 
unstandardized residuals in linear regressions predicting values on error 
trials from values on correct trials (Meyer et al., 2017). A one-way 
ANOVA was used to compare the ERNresid between the two groups. 

2.4.5. Time-frequency 
For time-frequency data, a cluster-based permutation approach was 

conducted to identify trial-type (error vs. correct trials) effects in event- 
related delta (1–3 Hz), theta (4–8 Hz), alpha (9–14 Hz), and beta (15–20 
Hz) within the whole sample as implemented by the FieldTrip toolbox 
(Oostenveld et al., 2011). This method effectively controls for type I 
error rate arising from multiple statistical comparisons (i.e., across 
electrodes and time points; Maris and Oostenveld, 2007). 

With cluster-based permutation tests, the theoretical underlying 
distribution of the test statistics under the null hypothesis is generated 
by the data itself by an iterative shuffle of the condition labels over trials. 
If the test statistic associated with the non-shuffled data falls within the 
distribution of the null hypothesis, the null hypothesis cannot be 
rejected and this would indicate that the observed data could have been 
randomly generated (Cohen, 2014; Luck, 2014). With cluster-based 
correction, at each iteration of the null-hypothesis distribution genera
tion, the outcome is units of clusters instead of single pixels (i.e., elec
trodes; Cohen, 2014). In this work, the differences within conditions 
(correct versus error trials) across the whole sample were shuffled 
pseudo-randomly 2000 times. For each significant cluster in the (non- 
shuffled) data, the cluster-corrected p-value was computed as the sta
tistics of the proportion of clusters in the null distribution that exceeded 
the one obtained for the cluster in question. Clusters with a pcorr < .05 
were considered statistically significant. Cluster-based repeated mea
sures ANOVAs were conducted to extract within-subjects differences in 
event-related power changes between conditions (error vs. correct). 

Then, time-frequency power within each frequency band that 
emerged as significant from the cluster-based analyses was extracted as 
the averaged power in the specific time window and location (i.e., 
electrodes). Using the same approach as above, residualized difference 
scores were created for each significant time-frequency measure (Meyer 
et al., 2017). To compare the two groups on each significant time- 
frequency measure, separate one-way ANOVAs were computed. 

2.4.6. Correlations 
Pearson and point-biserial correlations were conducted across the 

sample for neural (i.e., the ERN and time-frequency measures), behav
ioral (i.e., RTs), and clinical (i.e., diagnostic group and CDI scores) data. 
Then, logistic regression was conducted to examine the amount of 
unique variance explained by each significant time-frequency and time- 
domain measure in determining the likelihood of MDD diagnosis. 
Collinearity was tested by calculating the Variance Inflation Factors 
(VIF) with the vif function of the car package (Fox et al., 2019). 

To examine internal consistency in the flanker task of the ERN and 
time-frequency measures, split-half reliability was computed by taking 
the correlation between even and odd error and correct trials and then 
adjusting with the Spearman-Brown prediction formula (Meyer et al., 
2014). This approach uses all event-related data from each participant to 
estimate the stability of the EEG measures across the task. 

3. Results 

3.1. Demographic and behavioral results 

Demographic and self-report measures for the MDD and HC groups 
are presented in Table 1. There were no significant differences between 
groups with respect to age, gender, or ethnicity, while the two groups 
differed in terms of total CDI scores. 

The two groups did not differ in terms of number of errors performed 
(HC: Merr = 40.1, SDerr = 17.9; MDD: Merr = 32.6, SDerr = 13.4; t(61) =
1.90, p = .07). Overall, all participants were faster on error trials 
compared to correct trials (Merr = 2.52; SDerr = 0.06; Mcorr = 2.64; SDcorr 
= 0.07; F1, 61 = 407.6, p < .001). Participants with MDD were generally 
slower than healthy controls (Mcont = 2.61, SDcont = 0.07, Mmdd = 2.64, 
SDmdd = 0.06; F1,61 = 5.72, p = .020), while no interaction between 
group and trial type emerged for reaction time (F1,61 = 0.45, p = .56). 

3.2. ERPs 

The ERN was larger (more negative) than the CRN (F1,62 = 49,2, p <
.001) across the whole sample. As shown in Fig. 1, the MDD group 
showed a smaller (i.e., more positive) ERNresid compared to the HC 
group (Controls: M = − 1.27, SD = 6.08; MDD: M = 1.49; SD = 4.48; 
F1,61 = 4.26, p = .043). 

Time-frequency differences between error and correct trials. 

3.3. Delta power (1–3 Hz) 

The cluster-based analysis on event-related delta power showed a 
significantly greater delta power to error trials relative to correct trials 
(electrodes FP1 FZ F3 F7 FCZ FC5 FC1 C3 T7 CP5 CP1 PZ P3 P7 O1 OZ 
O2 P4 P8 CP6 CP2 C4 T8 FC6 FC2 F4 F8 FP2 CZ; cluster F-valuemax 
=271,439.87, pcorr < .001, time window 0 to 1000 ms; Fig. 2, panel a, 
b, and c). 

3.4. Theta power (4–8 Hz) 

The cluster-based analysis on event-related theta power showed a 
significantly greater theta power to error trials relative to correct trials 
(electrodes = FP1 FZ F3 F7 FCZ FC5 FC1 C3 T7 CP5 CP1 PZ P3 P7 O1 OZ 
O2 P4 P8 CP6 CP2 C4 T8 FC6 FC2 F4 F8 FP2 CZ; cluster F-valuemax 
=224,937.32, pcorr < .001, time window 0 to 436 ms; Fig. 2, panel d, e, 
and f). 

3.5. Alpha power (9–14 Hz) 

The cluster-based analysis on event-related alpha power showed a 
significantly greater alpha suppression (i.e., decreased power) to error 
relative to correct trials (electrodes = FP1 FZ F3 F7 FCZ FC5 FC1 C3 T7 
CP5 CP1 PZ P3 P7 O1 OZ O2 P4 P8 CP6 CP2 C4 T8 FC6 FC2 F4 F8 FP2 
CZ; cluster F-valuemax =157,947.15, pcorr < .001, time window 0 to 
1000 ms; Fig. 2, panel g, h, and i). 

3.6. Beta power (15–20 Hz) 

The cluster-based analysis on event-related beta power showed a 
significantly greater beta suppression (i.e., decreased power) to error 
relative to correct trials (electrodes = FP1 FZ F3 F7 FCZ FC5 FC1 C3 T7 
CP5 CP1 PZ P3 P7 O1 OZ O2 P4 P8 CP6 CP2 C4 T8 FC6 FC2 F4 F8 FP2 
CZ; cluster F-valuemax =76,900.55, pcorr = .001, time window 0 to 470 
ms; Fig. 2, panel l, m, and n). 

3.7. Time-frequency differences between groups 

As shown in Fig. 3, the MDD group showed reduced thetaresid power 
(F1,61 = 4.00, p = .050, panel a) and greater betaresid power (F1,61 = 6.05, 
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p = .018, panel b) than the HC group. No delta or alpha power differ
ences emerged between the two groups (all ps > .35). 

3.8. Correlations 

Correlations between EEG measures and behavioral and clinical 
variables across the whole sample are shown in Table 2. The ERNresid 
and thetaresid power were negatively correlated (i.e., more negative 
ERNresid corresponded to increased error-related thetaresid). Thetaresid 
and betaresid power were also positively correlated. Betaresid was posi
tively correlated with alpharesid and negatively correlated with deltaresid. 
The ERNresid was positively correlated with RTs on error trials (i.e., a 
more negative ERNresid corresponded to slower RTs). Both being 
depressed and increased continuous CDI scores were related to increased 
betaresid. There were no other significant correlations among time- 
frequency, time-domain, and behavioral measures. Regarding internal 
consistency of EEG measures, Table 4 illustrates results of split-half 
reliability computations, which resulted moderate to high for most 
indices. 

3.9. Regressions 

Results of the logistic regressions are shown in Table 3. When all the 
ERP variables that related to MDD diagnosis were considered simulta
neously, both thetaresid and betaresid power, but not the ERNresid, were 
related to an increased likelihood of being diagnosed with MDD. Spe
cifically, MDD was associated with reduced error-related theta and 
increased error-related beta; however, the previous effect of ERNresid 
was no longer significant in this regression, suggesting that variance in 
MDD status related to a smaller ERNresid was accounted for by thetaresid 
and/or betaresid.

1 VIF values were all <1.43, indicating low 
multicollinearity.2 

4. Discussion 

The primary aim of the present study was to explore electrocortical 
measures of error monitoring, as indexed by the ERN and time- 

frequency power, in a sample of adolescents with and without MDD. 
As hypothesized, the MDD group showed reduced ERN and error-related 
theta relative to the control group. In addition, the MDD group was 
characterized by increased error-related beta power relative to the 
control group. 

Regarding time-frequency within-groups patterns, in line with pre
vious literature (Cavanagh et al., 2009; Cavanagh et al., 2017; Del
l’Acqua et al., 2022b; Luu et al., 2004; Muir et al., 2020; Munneke et al., 
2015; Sandre and Weinberg, 2019; Trujillo and Allen, 2007), the entire 
sample was characterized by greater delta and theta power following 
error compared to correct trials. This supports the view that both delta 
and theta power might be linked to error monitoring processes. Never
theless, these measures were not correlated, and the MDD group had 
reduced error-related theta but not delta power. Taken together, these 
findings suggest that error-related delta and theta might reflect distinct 
processes relevant to error monitoring. For instance, previous studies 
suggest that theta power may index an initial error detection and pri
mary response outcome (Cavanagh et al., 2009; Cavanagh and Frank, 
2014), whereas error-related delta may reflect more elaborative pro
cesses during error monitoring (Bernat et al., 2015; Watts and Bernat, 
2018), such as the processing of higher-level aspects of outcomes (e.g., 
relative outcome, outcome magnitude, expectancy). Further studies are 
warranted to clarify this potential functional dissociation between error- 
related delta and theta power. Moreover, contrary to what was hy
pothesized, no group difference emerged in error-related delta power. 
This finding provides further evidence for a potential dissociation be
tween error-related delta and theta power (e.g., Sandre and Weinberg, 
2019), although error-related delta dysfunctions in MDD may develop 
later with increasing duration and chronicity of the condition. 

In addition, in line with a previous study that explored error-related 
time-frequency patterns (Li et al., 2020), alpha power decreased 
following the commission of an error relative to a correct response. 
Given that alpha activity is inversely related to cortical activity, this 
alpha power decrease might reflect increased cortical arousal and 
engagement of attentional resources required to adjust behavior 
following an error (Carp and Compton, 2009; Li et al., 2020). Moreover, 
the sample showed reduced beta power to error relative to correct trials. 
Based on previous investigations suggesting that beta suppression fa
cilitates motivational processes to prepare and execute upcoming re
sponses and to allow responses to be adjusted appropriately (e.g., Gable 
et al., 2016; Glazer et al., 2018; Meyniel and Pessiglione, 2014; Li et al., 
2020; Wessel et al., 2016; Wilhelm et al., 2022), this result may reflect 
the engagement of greater motor preparation for the subsequent trial 
following the commission of an error. 

In line with some previous studies (Weinberg et al., 2015b; Ruchsow 
et al., 2004, 2006), the group with MDD showed reduced ERN amplitude 

Fig. 1. (Panel a) Response-locked event-related potential (ERP) waveforms for the difference between error and correct trials (ΔERN) in the MDD group (red line) 
and HC group (black line). 

1 The results of the logistic regression did not differ based on the inclusion of 
overall response times as a covariate. Moreover, response times were not a 
significant predictor in the model (p = .06).  

2 A linear regression predicting CDI scores from the same time-frequency and 
time-domain measures was computed as a control analysis and revealed a 
significant effect of betaresid (p = .03) and not of thetaresid or ERNresid (ps >
0.63). 
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relative to controls. As suggested by Weinberg et al. (2015a, 2016), the 
magnitude of the ERN might reflect the degree to which errors are 
evaluated as threatening which, in turn, mobilizes defensive systems to 
respond adaptively. Hence, the present findings may support the ECI 
model, showing that MDD is related to reduced functioning of the 
Negative Valence System. In addition to the reduced ERN, individuals 
with depression showed reduced error-related theta relative to controls; 
increased error-related theta power was associated with a larger (i.e., 
more negative) error-related negativity, although ERN amplitude was 
not associated with other time-frequency measures. These results 

suggest that theta power and the ERN might share a functional role in 
error processing (e.g., Cavanagh et al., 2009; Dell’Acqua et al., 2022a). 
In this way, the current study provides evidence for the inclusion of not 
only the ERN but also error-related theta as a potential unit of mea
surement in the sustained threat construct of the Negative Valence 
System. 

This was the first study to show greater error-related beta power in 
the MDD group relative to the control group. Based on previous litera
ture (e.g., Li et al., 2020; Wessel et al., 2016; Wilhelm et al., 2022), this 
finding could indicate that participants with MDD are characterized by 

Fig. 2. (Panel a, d, g, l) Mean event-related time-frequency power (a: delta; d: theta, g: alpha; l: beta) of each participant averaged over the significant electrodes and 
time points for correct and error trials. Each circle represents one participant. (Panel b, e, h, m) Time course of grand-average event-related time-frequency power (b: 
delta; e: theta, h: alpha; m: beta) of participants averaged over the marginally significant electrodes for correct (red line) and error (black line) trials. Shaded areas 
represent ± standard error of the mean (SEM) and the gray box represents the significant time window. (Panel c, f, i, n) Topography of the averaged event-related 
time-frequency power for correct and error trials (c: delta; f: theta, i: alpha; n: beta). 
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reduced motor preparation following errors (i.e., greater inhibition). 
Besides, the group with MDD showed longer response times than the 
control group to all trial types and not just following errors, suggesting 
that they might be characterized by overall motivational inertia in 
performing the task. In addition to error-related beta, future ad-hoc 
studies should be designed to explore the link between beta power 
and other ERPs associated with action preparation, such as the lateral
ized readiness potential (Dayan et al., 2017; Morand-Beaulieu et al., 
2021; Schurger et al., 2021). 

A second aim of the present study was to examine whether using a 
combination of the ERN and time-frequency measures would explain 

unique variance in MDD status. In a logistic regression model, time- 
frequency measures that differed between the two groups and the ERN 
were included as predictors of group status. Greater error-related beta 
and reduced error-related theta emerged as significant predictors of 
MDD over and above ERN, suggesting that the variance in MDD group 
status associated with a smaller ERN was accounted for by the time- 
frequency measures. Considering that error-related theta and the ERN 
were strongly correlated, and both reduced in MDD, it could be that, in 
this model, the variance related to their underlying shared process in 
MDD was better explained by theta power. From these results, it appears 
that ERN deficits in youth MDD are better explained by variance in theta 
and beta power, which may explain why prior work examining only ERN 

Fig. 3. (Panel a and b) Mean differences in event-related theta (panel a) and beta (panel b) power between the MDD group and the HC group. Error-related theta and 
beta are residualized scores (i.e., residualized differences scores computed by saving the unstandardized residuals in linear regressions predicting values on error 
trials from values on correct trial). 

Table 2 
Bivariate Pearson and point-biserial correlations of EEG measures, group status, and behavioral and self-report measures.   

Group Deltaresid Thetaresid Alpharesid Betaresid ERNresid 

Group –      
Deltaresid − 0.10 –     
Thetaresid − 0.25* − 0.05 –    
Alpharesid 0.12 − 0.15 0.43* –   
Betaresid 0.31* − 0.33* 0.25* 0.45* –  
ERNresid 0.25* − 0.05 − 0.40* 0.02 0.02 – 
RTs correct 0.27* 0.01 − 0.18 − 0.12 0.03 0.18 
RTs Error 0.28* − 0.02 − 0.20 0.01 0.12 0.27* 
RTs post-error 0.27* 0.02 − 0.15 − 0.12 0.06 0.13 
RTs post-correct 0.29* − 0.04 − 0.20 − 0.13 0.04 0.20 
CDI scores 0.63* 0.01 0.08 0.17 0.31* 0.06 

Note. ERN = error-related negativity; RTs = response times. 
* p < .05. 

Table 3 
Results of the logistic regression analysis predicting diagnostic status (MDD, HC) 
from the ERN and theta and beta power to error trials.  

Measure Prediction of diagnostic status (MDD, HC) 

R2 χ2 OR 95 % CIOR p 

0.31 16.4    

ERNresid   1.05 0.94–1.18 .42 
Thetaresid   0.37 0.15–0.90 .03 
Betaresid   2.82 1.26–6.30 .01 

Note. Logistic regression was used to predict the dichotomous dependent vari
able diagnosis of MDD (0 = absent, 1 = present) from both time-frequency 
measures that emerged as significant from the cluster-based analyses (beta 
and theta power) and the ERN. The Nagelkerke R2 and χ2 statistics are reported 
for the logistic regression models. CI = confidence intervals; OR = odds ratio. 

Table 4 
Results of split-half reliability computed by taking the cor
relation between even and odd trials and then adjusting with 
the Spearman-Brown prediction formula.   

r (p-value) 

Delta error trials 0.358 (.004) 
Delta correct trials 0.739 (<.001) 
Theta error trials 0.473 (<.001) 
Theta correct trials 0.823 (<.001) 
Alpha error trials 0.525 (<.001) 
Alpha correct trials 0.956 (<.001) 
Beta error trials 0.374 (<.001) 
Beta correct trials 0.887 (<.001) 
ERP error trials 0.695 (<.001) 
ERP correct trials 0.970 (<.001)  
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amplitudes in depression has led to inconsistencies. Taken together, 
these findings suggest that reduced error-related theta and greater error- 
related beta power represent unique correlates of MDD in youth. 

The adopted time-frequency method provided additional informa
tion on error monitoring deficits in MDD – namely reduced error-related 
theta and greater error-related beta. Regarding the methodology, the 
present investigation explored time-frequency patterns associated with 
error monitoring with a cluster-based permutation approach, an ad hoc 
data-driven method that avoids selection biases (Cohen, 2014; Luck, 
2014). 

The present study has some limitations worth noting. First, most of 
the participants were female and White. Future studies should replicate 
our findings in more diverse samples. Lastly, the current study was cross- 
sectional. Longitudinal studies should be conducted in the future to 
determine whether these abnormal error-related EEG patterns could 
represent a risk factor for the onset of depression instead of just being a 
mere correlate of the disorder. 

Taken together, by examining both time-domain and separate time- 
frequency measures, the present study provided novel evidence on error 
monitoring alterations in youth MDD, suggesting that depression during 
adolescence may be characterized by reduced error monitoring (i.e., 
reduced ERN and error-related theta) and post-error inhibition (i.e., 
greater error-related beta power). Despite the evident need for replica
tion, these findings may set the stage for the hypothesis that MDD is 
related to reduced error monitoring and, consequently, to a potential 
reduced Negative Valence Systems activity in depression. This study was 
the first to examine whether the ERN and time-frequency indices related 
to error monitoring predict unique variance in MDD. The results pro
vided further information on the pathophysiology of MDD in youth and 
might be useful to enhance the clinical utility of ERP measures. 
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